Supplementary Material

Section A: Integral Representation For The Generating Function

The model dealt with in this paper, the nearest-neighbor random walk on a simple cubic
lattice, is sufficiently simple enough to allow the exact representation for the generating
functions to be found in terms of the function H(7;u|v) given in Eq.(6). Let p¥)(j) be the
probability that the displacement in a single step of a random walk in free space is equal
to j which can take on any one of the six values (+1,4+1,£1)/6. Let ¢; = cos6;, i = 1,2, 3.
Consider, first the random walk on an absorption-free unbounded lattice. The characteristic
function for such a random walk is defined in terms of the 6; by
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An integral representation for the propagator on an unbounded lattice is
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The triple integral can be reduced to a smgle integral by replacmg the denominator by the
identity u=t = [° e""!dt which replaces pC )(x|r) by
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where the I,,,(u) are modified Bessel functions of the first kind. The value of ¢ derived from
Eq.(9) is seen to be e #a /(1 + 7).

To fulfill the requirement that the propagator should vanish at z = 0 we use the method
of images to write
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which satisfies the boundary condition at z = 0. This expression can be represented as a
Laplace transform by changing the variable of integration to p = A(. This leads to the
integral representation
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= 6L{H(p;r|r")exp[—p(e's — 1 — pu,)]}

where £ {} is the Laplace transform of the bracketed terms with a Laplace parameter neta.



